Fluoropolymers: Essential for Europe's Medical and Pharmaceutical Sectors

Webinar hosted by the Fluoropolymer Product Group (FPG)

18 November 2025

Fluoropolymers

roduct Group of Plastics Europe

Webinar Agenda

- About FPG | Caroline Andersson
- Fluoropolymers: Safe Use Low Risk Indispensable for Medical Technologies | Sylvi Claussnitzer | SPECTARIS
- Relevance of Fluoropolymers for the ZEISS Medical Portfolio and Beyond | Daniel Peranic |
 Zeiss
- The innovative pharmaceutical sector perspective | Franz-Manfred Schüngel | EFPIA
- Moderated Q&A
- Summary and REACH Restriction update | Caroline Andersson

Please note:

- The **Q&A** at the end of the event is with <u>written questions only.</u> Please share your questions for us via the Zoom Q&A tab. We will try to answer as many questions as possible. Note that we have a FAQ page on our website here: https://fluoropolymers.eu/faq/#about-product
- This audience includes the entire value chain and is the ideal platform to share evidence, listen, and engage constructively.
- The webinar is not being recorded.
- This presentation will be sent to all registrants.

About FPG

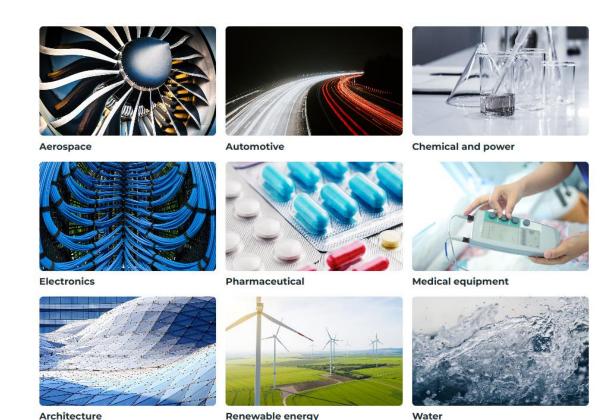
The Fluoropolymers Product Group (FPG) represents Europe's leading fluoropolymer producers and experts

We are the voice of the industry calling for responsible manufacturing, sustainable life cycle management and regulatory clarity.

We are a Product Group of Plastics Europe, headquartered in Brussels.

We ensure that fluoropolymers can continue to play their vital role in enabling innovation and sustainability across key industries, including healthcare, renewable energy, semiconductors, transportation and more.

The FPG Members are:


Properties of Fluoropolymers

- Fluoropolymers are advanced polymers known for their unique chemical and thermal resistance properties used in various industries.
- They differ fundamentally from other PFAS due to their unique properties and safety profile when used responsibly.
- They are chemically inert, non-mobile, not water-soluble, and non-bioavailable. They remain stable under high temperatures and extreme environmental conditions.
 - They are high performance materials, essential to many critical applications in a broad range of industrial, commercial and consumer uses.
 - They cannot be substituted without compromising safety and performance.
 - They are responsible, safe and durable by design.

Examples of Societal and Environmental Value

- **Durability and Efficiency**: Extend product lifespans, reduce maintenance, and lower energy consumption, contributing to sustainability goals.
- Climate Goals: Their role in clean energy technologies (e.g., hydrogen, batteries) supports EU climate ambitions
- Health: Ideal for medical devices because they are non-reactive with human tissue, making them safe for use in implants and catheters. They don't trigger immune responses or degrade inside the body, which is crucial for long-term medical applications.
- **Safety**: Their unique chemical and physical properties make them ideal for demanding environments where reliability, durability, and non-reactivity are critical.

The FPG webinars

Through 2025/2026, FPG is hosting a series of webinars to bring together stakeholders across the fluoropolymer value chain and support a coordinated, science-based approach to their safe and strategic use.

This session focuses on **the medical sector**, highlighting how fluoropolymers drive innovation and ensure safety, from medical devices and pharmaceutical manufacturing to life-saving treatments.

By bringing together experts from medical and pharmaceutical groups, FPG aims to share insights, raise awareness of critical applications, and align sector stakeholders on responsible use and sustainable production.

The **presentations** of past webinars are available in the Appendix. Future events will be announced on the FPG website here: www.fluoropolymers.eu

Fluoropolymers: Safe Use

– Low Risk –
Indispensable for Medical
Technologies

Sylvi Claussnitzer SPECTARIS

Fluoropolymers

Fluoropolymers: Safe Use – Low Risk – Indispensable for Medical Technologies

German Medtech Associations SPECTARIS/BVMed

Sylvi Claussnitzer, SPECTARIS e.V. / SPECTARIS / Bundesverband Medizintechnologie - BVMed

E-Mail: Claussnitzer@spectaris.de

FPG-Webinar: Essential for Europe's Medical and Pharmaceutical Sectors | 18 November 2025

SPECTARIS: The Voice of Germany's High-Tech Sectors

- SME driven Industry Association
- 400 Member Companies, amongst others:
 ZEISS, B.Braun/Aesculap, Bosch, Dräger, Jenoptik, Karl Storz, Rodenstock, ThermoFisher
- Representing four high-tech sectors:

9

Highly dependent on fluoropolymers as critical high-performance materials

SPECTARIS- Broad Spectrum of the Medical Technology Industry

< 130 manufacturers of medical products in the capital goods and assistive technology sectors, including homecare providers in respiratory home therapy.

Medical supply systems / complete medical solutions / emergency medicine

Surgical instruments / measuring instruments / diagnostic instruments

Implants

Large and small sterilizers

Ophthalmic devices

Hospital and nursing beds/furniture

Assistive devices

Digital health and care applications, digital medical products

Unique Combination of Properties Driving Fluoropolymer Use

Fluoropolymers deliver a unique combination of properties in a single material that alternative substances cannot simultaneously provide

Non-stick, low-friction properties enabling smooth insertion and manipulation in invasive procedures

Chemical resistance to blood, drugs, oxygen, and aggressive solvents

Heat and flame resistance meeting stringent medical device safety standards

Biocompatibility and biological inertness proven over 50+ years of clinical use

Electrical insulation with low dielectric constant and high dielectric strength

Mechanical durability under repeated stress and extreme temperatures

Fluoropolymers play a pivotal role in the Medical Sector

Category	Representative Applications (non exhaustive)
Blood-Contacting Invasive Devices	Guide wires, catheters, drug-eluting stents, Endoscopes, blood gas analyzers, heart valve prostheses
Implantable/ Long-Term Invasive Devices	Cardiac implants and valve components, orthopedic implants, ePTFE vascular grafts, hernia meshes, bone Cements and Scaffolds, Neurostimulation Systems, Intraocular Lenses
In Vitro Diagnostics (IVD)Laboratory Instruments (NON- Invasive)	Heat-transfer agents in clinical chemistry analyzers, chemical-resistant tubing systems, blood glucose meters, centrifuges
Electrical and Electronic Medical Equipment	Ventilator cables with fluoropolymer insulation, MRI systems, medical lasers, ultrasound probes, sensors, coatings and membranes in intensive care ventilators and anesthetic devices
Seals, Gaskets, Mechanical Components	O-rings in orthopedic power tools or hospital gas supply installations, low-friction wear components in lancing devices, hemostasis valve spacer rings, ceiling supply units
Manufacturing Equipment and Processing Aids	PTFE tubing for contact with reactive chemicals, mold release agents for thermoset components, Teflon stir bars in IVD reagent production, cleanroom equipment
Device Marking and Identification	Printing inks for dosage markings on syringes, measurement scales on analyzers

Fluoropolymers – Physical Forms

Physical Form	Key Applications
Coatings (liquid)	Guidewires, catheters, stents
Coatings (powder/ sintered)	Device components, manufacturing tooling
Small-diameter tubing	Multi-lumen catheters, sample transport
ePTFE (porous)	Vascular grafts, hernia mesh
Fibers (mono/braided)	Surgical sutures, pledgets
Films/membranes	Venting, protein blotting, release liners
Solid molded parts	O-rings, seals, washers
Liquid perfluorinated	Blood substitutes, ophthalmic
Heat-shrinkable tubing	Catheter manufacturing
Fluorinated inks/waxes	Device markings/identification

18 November 2025 SPECTARIS FPG Webinar 13

Background Document- Deficiencies (Extract)

Process

Consultation Stakeholder input insufficiently reflected in the Background Document

Derogations

The-very unrealistic- 13.5-year derogations covers only invasive, implants and packaging → most medical applications not considered

Risk Assessment

No adequate differentiation between PFAS risk profiles; no exemption for fluoropolymers (no "unacceptable risk" (Art. 68 REACH))

Data Quality

Risk assessment based on incorrect polymeric PFAS emissions; MedTech emissions yet are treated like high-emission monomers.

Use Categories

Medical device categories not aligned with EU MDR; cross-sector supply-chain uses not assessed.

Availability of alternatives

Non-replaceability of fluoropolymers acknowledged while substitution is still required-impossible to implement

Example: Process

End-use Derogations Don't protect Supply Chains—They multiply Complexity

Supply chains involving multiple use categories cannot be segregated by end use derogation categories without creating operational impossibility

Even with time-limited derogations, low fluoropolymer volumes for medical devices may be economically insufficient to sustain suppliers.

Time-limited derogations create investment uncertainty, not certainty. Result: Suppliers might exit rather than invest in a declining market

Example: Derogations

Fluoropolymers – Background Document: More Questions remain

A full ban of Fluoropolymers with a transition period of 18 months is proposed for:

X

A full ban of Fluoropolymers with a time-limited derogation period of 13,5 years is proposed for:

- Sterilization gases
- Wound treatment products
- Coating of medical devices
- Implantable medical devices (medical implants and meshes),
- Invasive medical devices (e.g. tubes and catheters),
- Vision applications (i.e. invasive), rigid lens and ophthalmic surgery
- Packaging for medical devices

18 November 2025 SPECTARIS FPG Webinar 16

Example: Data Quality

LCA Emissions: Systematic Overestimation of Environmental Risk

Production Fluoropolymers: 0.01 %

 Medical Device Production Emissions – Inappropriate 50% Default Assumption (ERC 5)

Use Phase: Neglegible

End of Life Emissions: 1% – Mineralisation rate 98-99 % instead of proven 99,9 or 99,99 % KIT Study, comprehensive follow-up study

Medical devices are manufactured in nearly closed-system industrial environments using mechanical assembly and low-temperature thermal processes, subject to stringent quality control standards and high material resource efficiency.

Risk of regrettable Substitution – No viable Alternatives exist

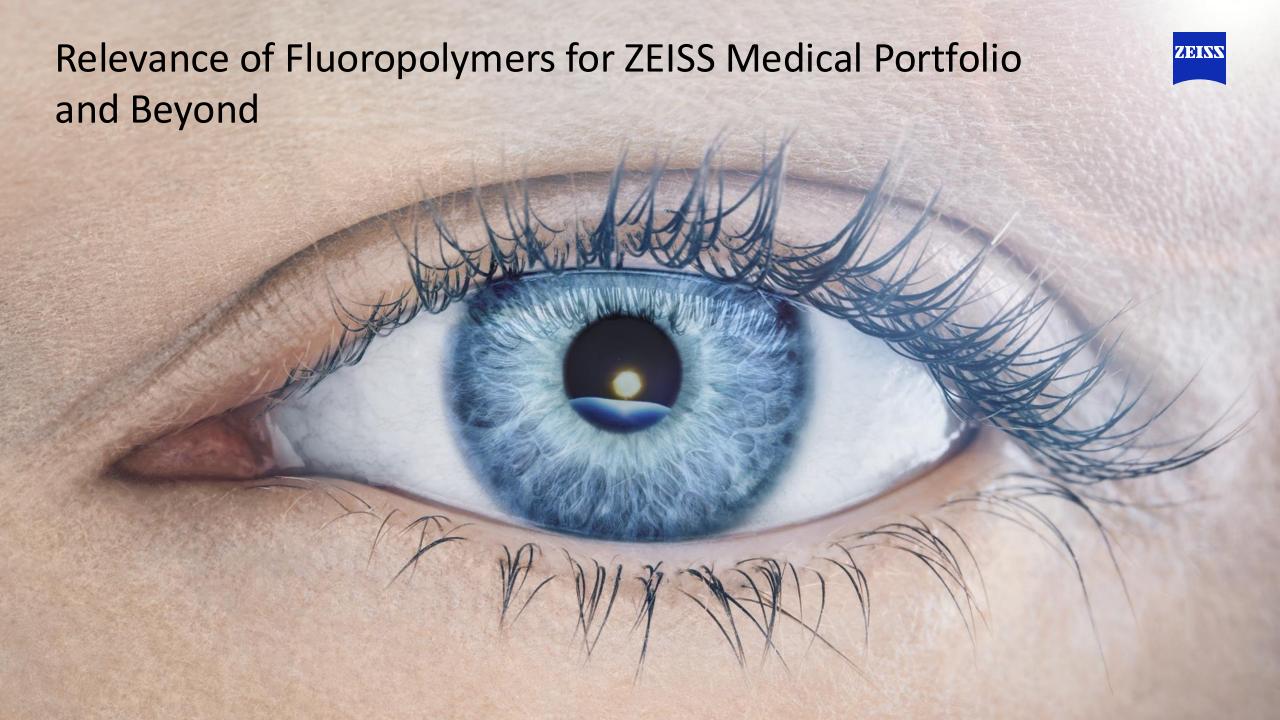
- Without equivalent persistence and stability, substitutes threaten essential medical performance and patient safety.
- X No alternative materials offer a comparable combination of physical and chemical performance characteristics.
- X Proposed alternatives (e.g. siloxanes, PVC) are themselves being regulated

Clear political Guidance/Corrective Decisions are urgently needed

- Ensure evidence-based approach: correct inaccurate emission assumptions and risk assessments for Medical devices.
- Based on evidence: target groups of PFAS which pose an unacceptable risk (68 REACH)
- Fluoropolymers out of scope, as they do not pose an unacceptable risk
- Avoid the sector specific derogation concept: It fails to reflect supply-chain interlinkages and risks supply chain interruptions

NOW!

Ensure a proportionate and practicable PFAS Restriction! Help to avoid severe socioeconomic impact


Fluoropolymers

roduct Group of Plastics Europe

Relevance of Fluoropolymers for the ZEISS Medical Portfolio and Beyond

Daniel Peranic

Zeiss Group

Agenda

- 1 Introduction
- Use Case 1: Intraocular lenses (IOL) with haptic
- Use Case 2: Retinal liquids
- Use Case 3: Clean-coat layers on ophthalmic lenses
- **05** Recommendations for action on PFAS restriction

Shaping the future The ZEISS segments (FY 2023/34)

Semiconductor Manufacturing Technology Industrial
Quality & Research

Medical Technology Consumer Markets

4,122 € million in revenue

8,586 employees

2,369 € million in revenue

8,591 employees

2,611 € million in revenue

8,629 employees

1,666 € million in revenue

13,008 employees

ZEISS contributions as an enabling partner

2x

Winner of German Future Prize

In 2020 for the development of EUV lithography and in 2022 for the development of ZEISS Lattice Lightsheet 7.

100%

of leading edge microchips worldwide

made on ASML lithography systems with ZEISS optics

10,000,000

eyes treated with ZEISS SMILE®

During an operation with SMILE® refractive errors of people who are short sighted are corrected with the ZEISS VISUMAX 800.

30+

Nobel laureates

used ZEISS systems to advance scientific progress

300,000

surgical procedures per

year

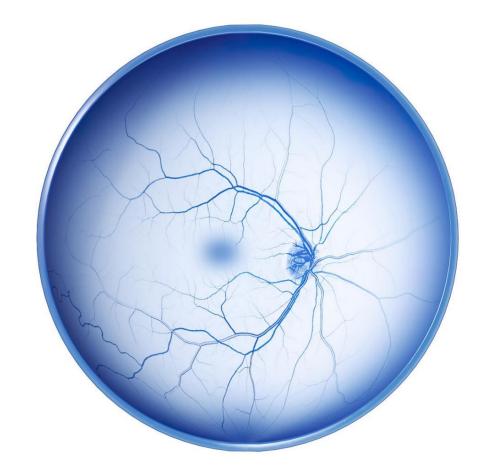
with ZEISS Kinevo 900 visualization systems.

45,000,000

Measurement points

for recording the perfect fit using ZEISS Visufit 1000

Relevance of Fluoropolymers in Medical Portfolio Intraocular lenses (IOL) with haptic



- Intraocular lenses (IOLs) allow patients with cataracts to regain their vision after the appropriate eye surgery.
- In cases where conventional IOLs cannot be anchored well in the capsular bag or where the capsular bag is torn, a special fixation must be made using **haptics**. They are made of PVDF (polyvinylidene fluoride).
- Alternative substances do not have sufficient long-term chemical stability in the eye. This increases the risk of the patient requiring subsequent eye surgeries. In this case, fluoropolymers are used solely for the safety and health of the patient.

Relevance of Fluoropolymers in Medical Portfolio Retinal liquids



- Retinal liquids preserve the vision of patients with vitreoretinal issues. Retinal liquids are extremely stable organic structures composed exclusively of perfluorocarbon liquids PFCLs.
- These unique physical properties are used in retinal surgery to unroll and reapply the retinal layer. The nonmiscible perfluorocarbon bubble remains separate from the aqueous humor so it can be removed entirely towards the end the of surgery.
- The use of PFCL results in a significant improvement of retinal detachment surgery. Even the most complicated retinal detachments can now be treated reliably and successfully.

Relevance of Fluoropolymers in Medical Portfolio Clean-coat layers on ophthalmic lenses

- Ophthalmic lenses have an outer clean-coat layer.
- The protective layer prevents premature damage (e. g. scratches) to the lenses and increases safety because it eliminates stray light caused by scratchdamaged lens surfaces, making activities such as driving safer.
- There is no other substance class with a comparable profile of properties available than the current solution. Ophthalmic lenses (eyeglasses) are medical products.

Recommendations for action on PFAS restriction

The sectoral exemptions provided for in the dossier must consider the entire ecosystem.

(02) An exception for fluoropolymers is a small measure with a big impact.

 $\left(\begin{array}{c}03\end{array}\right)$ The regulation must be feasible and provide planning security for companies.

It is possible to protect people and the environment without unintended policy effects.

Seeing beyond

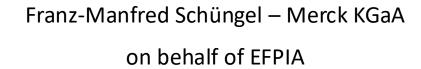
The innovative pharmaceutical sector perspective

Franz-Manfred Schüngel EFPIA

Fluoropolymers

FPG webinar - Fluoropolymers: Essential for Europe's medical and pharmaceutical sectors

The innovative pharmaceutical sector perspective



About EFPIA

The European Federation of Pharmaceutical Industries and Associations (EFPIA) represents the biopharmaceutical industry operating in Europe.

Through its direct membership of **37 national** associations, **40 leading pharmaceutical** companies, and a growing number of small and medium-sized enterprises (SMEs), EFPIA's mission is to create a collaborative environment that enables our members to innovate, discover, develop and deliver new therapies and vaccines for people across Europe, as well as contribute to the European economy.

More information is available on EFPIA website.

Fluoropolymers in Pharmaceutical Production and Packaging

- Manufacturing Hardware for chemical or pharmaceutical products such as reactor lining, seals,
 - gaskets, tubing
- Consumables in manufacturing
- Machinery in manufacturing and analytics
- Laboratory equipment
- Injectables Packaging
- Drug Delivery Devices
- Tablet Blisters

Development, Manufactur	e & Supply of Medicinal Products – PFAS Use Scenarios*
Active Pharmaceutical	Active substances in medicines within the scope of Regulation (EC) N

Ingredients

Devices

functional group)

Pharmaceutical

Manufacturing Settings

(containing CF₂ and/or CF₃

Packaging & Drug Delivery

lopment, Manufacture & Supply of Medicinal Products – PFAS Use Scenarios*	
copinions, riamanastars a supply of risalismatt readots. Trino ess scenarios	

)er	og	ati	or	1

cture & Supp	ly of Medicina	ıl Products – PF	AS Use Scenarios*	

Active substances in medicines within the scope of Regulation (EC) No 726/2004 and Directive 2001/83/EC

Excipients in medicinal products for ophthalmic and dermatological therapies

Time unlimited

Coatings in release liners and backing film in transdermal patches

Coated canisters in pressurized metered-dose inhalers

Catalysts and processing aids used in industrial uses

proposed in the Annex XVII entry for PFASs to identify any missing uses that could fall within scope of the Restriction

Starting materials and intermediates in the manufacture of PFASs for a use listed under paragraph 4

Time unlimited

Production of PFAS containing mixtures / articles in the upstream supply chain for a use listed under paragraph 4

Use of fluoropolymers in filtration and separation media for water treatment / purification

*This is not an exhaustive list; it is recommended that member companies review their manufacturing and packaging operations against the conditions and derogations

Uses under product and process orientated research and development (PPORD)

Time unlimited

Propellants in pressurized metered dose inhalers

6.5 yrs

13.5 yrs

13.5 yrs

13.5 yrs

13.5 yrs

13.5 yrs

6.5 yrs

13.5 yrs

13.5 yrs

13.5 yrs

13.5 yrs

Exempt

Time unlimited

Blisters for solid oral dose formulations

Coated plungers in pre-filled syringes

Solvents used in industrial uses

Pre-filled injection pens & autoinjectors

6.5 yrs 13.5 yrs

Coated rubber stoppers in vials/flasks for injectable medicinal products

Sealing applications in industrial uses Machinery applications in industrial uses Art. 67(1) - scientific experimentation, analysis or research carried out under controlled conditions (<1000kg/yr) **Quality Control Analysis Research & Development**

Key Reasons for Fluoropolymer Use

Fluoropolymers in manufacturing allow for compliance with quality requirements by

- Non-stick and smooth, hard surfaces, therefore easy to clean
- Non-leaching and non-abrasive to avoid impurities
- Resistant to heat and varying chemical conditions, easy to disinfect and universal
- Outstanding mechanical properties resulting in reliability and long service life

Fluoropolymer films or coating on elastomers in packaging and devices

- Maintain product quality as a barrier against air or moisture, leachables and particles
- Maintain sterility of contents
- Does not interact with or selectively adsorb product components such as biologic API
- Impact size and emission profile of the package, shelf life and protection of the product, oftentimes resulting in beneficial sustainability contributions

Obstacles to Substitution

- For most materials, **no alternative** is available. The transition periods are suggested to allow for their development. However, product lines may be discontinued even when drop-in replacement is available.
- Any new materials needs to be **tested** and **market authorisations** need to be adapted. These time and resource consuming activities are not regarded.
- There is concern about **regrettable substitution**, as beneficial performance is not mandated by the restriction, and environmental benefits of PFAS use are not taken into account
- If the function is connected to the structure, such as in **active ingredients**, substitution is not possible

Manufacture of Biological Active Substances – Filtration of Aqueous Solutions

Liquid filter containing PVDF components

Applicable derogation:

Industrial use of fluoropolymers in filtration and separation media for water treatment and purification for 6.5 years after entry into force

PVDF polyvinylidene fluoride

Downstream Processing – Buffer Make Up WFI is used in the preparation of buffer solutions which are filtered to protect the product from microbial contamination

Technical Textiles – Impact Assessment:

- PES (polyethersulfone) membranes are technically feasible alternatives to current uses of PVDF in filtration and separation media for water treatment and purification.
- 6.5 years are insufficient for the replacement of all PVDF filters across the sector. Priorisation of key processes will lead to major impact on smaller or less profitable product lines towards the end of the derogation period.
- Changes to an approved manufacturing process requires testing and approval from health authorities. Impact on capacity
 of public authorities such as European Medicines Agency has not been evaluated

Manufacture of Biological Active Substances – Sealing Applications

PVDF tube connector fittings on top of a Nanofiltration unit

PVDF is chosen over PP tube connectors as a higher-pressure rating is being applied. The tube connectors are single use items as they are replaced after every production batch

Applicable derogation:

Sealing applications in industrial uses until 13.5 years after entry into force

PVDF polyvinylidene fluoride PP polypropylene

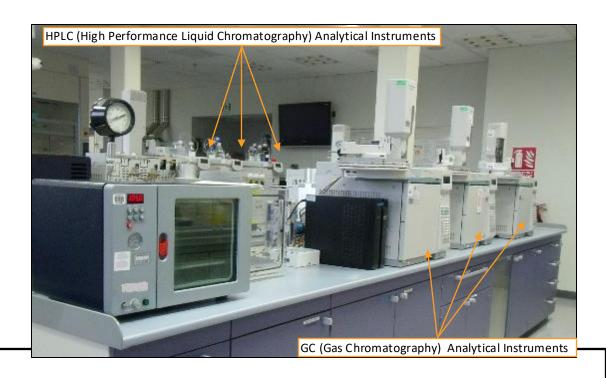
Sealing Applications – Impact Assessment:

- No technically feasible alterative available where a combination of multiple properties of fluoropolymers are required in a a sealing application in industrial use, which ensure compliance with performance & safety standards
- Regulatory standards in pharmaceutical manufacturing that apply to the purity of processed materials, such extractables
 and leachables from pharma contact materials, are insufficiently considered in derogations and timelines

PFAS Chemicals Used in Synthesis, Purification or Analysis of APIs

Use of PFAS in the quality control analysis of medicinal products mandated by Pharmacopoeia Standards

• EDQM produce Pharmacopoeia monographs, which are mandated in the quality control analysis of medicinal products


PFAS reagents are used in more than 170 pharmacopoeia monographs. Of these, 100 prescribe the use of trifluoroacetic acid in the mobile phase of HPLC analytical methods

More than 90% of EDQM reference standards (>2500 reference standards), are supplied in glass vials with a PTFE coated stopper or septum. PTFE provides a protective layer to avoid chemical reactions between closure components and contents

- Exemption for scientific experimentation, analysis or research carried out under controlled conditions (<1000kg / yr) applies to quality control analysis
- Supply chain risk in the procurement of PFAS laboratory reagents and articles is a possibility

Human Health Medicinal Products Sector Survey – Restriction Impact on Patient Access to Medicines & EU Strategic Autonomy

Approximately 1900 active substances impacted by the Restriction because:

- PFAS used in manufacturing and packaging operations at an EU facility and/or
- PFAS constituents present in the intermediate packaging or drug delivery device of a medicinal product placed on the EU market

Only 7% of the active substances contain the PFAS moiety, and therefore fall under the proposed derogation for APIs

Supply chains of **93% of the active substances** involve EU manufacturing operations, which **depend on fluoropolymers**, within plants, equipment and single use systems. In global supply chains, medicine shortages are a possibility

A wide range of therapeutic areas are impacted e.g. cancer treatment, cardiovascular disease, diabetes, mental health conditions, respiratory disorders. A major share of critical medicines is impacted:

- >600 medicines on WHO Essential Medicines list
- EU Member State "Critical Medicine" listing e.g. 78% of critical medicines in Norway could be impacted

- Certain Fluoropolymers and other PFAS are key components in both the production of pharmaceuticals and the medicinal product itself
- All of these materials are thoroughly tested and strictly regulated to ensure the safety, efficacy, and quality of medications. The same rules apply to replacements
- Grouping of materials should be based on uniform properties,
 a common risk and a harmonised CLP classification
- A **ban** should address an unacceptable risk, and avoid conflicts with essential use or other regulatory bodies decisions, such as the European Medicines Agency (EMA)

Thank you for your kind attention!

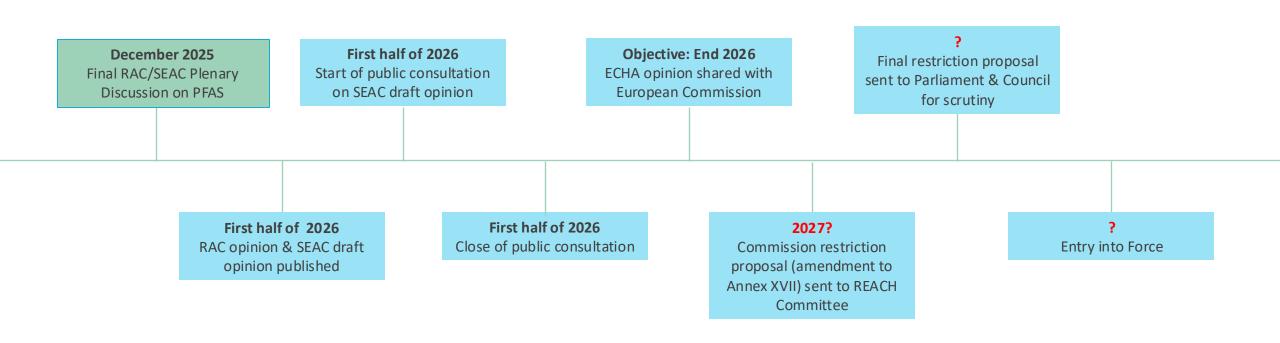
Summary & REACH Restriction Updates

Caroline Andersson

Fluoropolymers Product Group (FPG)

Fluoropolymers

Continuing our Collaboration



- Restricting fluoropolymers would undermine the EU's industrial resilience, innovative capabilities, competitiveness, and Green Deal goals, with severe socio-economic impacts.
- FPG is committed to promoting innovation, safe use, sustainable manufacturing and stewardship across the industry for all our products.
 - Through our **Voluntary Emissions Reduction Programme**, members have successfully met EU and UK milestones, reducing non-polymeric PFAS emissions.
 - The updated **Safe Handling Guide** equips downstream users with practical tools to ensure workplace safety andemissions control.
 - The **Technical Exchange Platform** fosters collaboration and transparency, helping industry share proven solutions and accelerate sustainability progress.
- As the voice of the industry across Europe, we actively contribute to the debate, advocating for a
 balanced regulatory environment based on scientific facts to ensure that European industries
 remain competitive and sustainable.

The PFAS REACH Restriction

- On 20 August 2025, ECHA published an update for the Restriction Dossier the Background Document. This is the Dossier Submitters' update to the initial restriction proposal.
- On 30 October 2025, ECHA hosted an information session to help stakeholders prepare for the upcoming public consultation on the SEAC (socio-economic impacts of the PFAS restriction) draft opinion.
- Public consultation expected March/April 2026 and will run for 60 days

Action Items for SEAC PFAS Draft Opinion Consultation

- Create an EU Login Account and set up multi-factor authentication using the EU Login mobile app
- Consultation timeline (Mark your calendars)
- Familiarize Yourself with the Consultation Structure
- Gather and Prepare Data
- Review Guidance Materials
- Draft Responses in Advance
- Check Sector-Specific Guidance

Watch ECHA's webinar (30 October)

Support & Resources:

- ECHA Webinar
- EU Survey Support
- ECHA Contact

Coming up

- For the most recent information regarding FPG's activities, please visit the FPG website at:
 www.fluoropolymers.eu
- FPG will host further webinars including:
 - Transport sector
 - Digital Economy
 - Manufacturing, Mechanical Engineering, Energy, Sealings
- FPG recognises important step in the ECHA process => SEAC consultation.
 - ECHA is steadily releasing information about the process and content of the consultation.
 - FPG is monitoring developments, and we will keep you up-to-date on latest news and tools via our webinars.

Fluoropolymers ** Product Group of Plastics Europe

Appendix

- FPG Manufacturing Programme (MP)
 - FPG Statement on the Manufacturing Programme 2025 Plastics Europe
 - Slides from the September MP webinar are available here: 8-Sept-2025-FPG-presentation-for-Webinar.pdf
 - Slides from the October SHG webinar available here: <u>20-Oct-2025-FPG-SHG-Webinar.pdf</u>
- ECHA publication 20 August 2025, Updated PFAS restriction proposal (Draft Background Document)
 - https://echa.europa.eu/-/echa-publishes-updated-pfas-restriction-proposal
- ECHA update on the timeline for the evaluation of the proposal
 - 6775e241-204e-af0a-a2d0-4c16ba2c138d
- FPG Statement on ECHA's Updated PFAS Background Document
 - https://fluoropolymers.eu/2025/08/27/fluoropolymers-recognised-fpgs-statement-on-echas-updated-pfas-background-document/
- FPG Statement, call for clarity
 - https://fluoropolymers.eu/2025/07/10/fpg-calls-for-clarity-on-fluoropolymers/
- FPG Safe Handling Guide
 - Guide for the Safe Handling of Fluoropolymer Resins

Appendix

- Webinar Presentations:
 - 8th September Webinar A Balanced Case for Fluoropolymers: https://fluoropolymers.eu/wp-content/uploads/2025/09/8-Sept-2025-FPG-presentation-for-Webinar.pdf
 - **10th October Webinar** Safe Handling of Fluoropolymers: Best Practices for Workplace Safety and Emissions Control: https://fluoropolymers.eu/wp-content/uploads/2025/10/20-Oct-2025-FPG-SHG-Webinar.pdf